LAB-1 EXPERIMENT

Please follow the instructions in the document and mail your pdf-files to the TA of your section

artunsel@gmail.com,

karahanmehmet13@gmail.com

Please name your pdf files as in the given example file:

Mehmet-Ali-Demir-111211102-lab-1-preliminary-G-3.pdf

Mehmet-Ali-Demir-111211102-lab-1-labreport-G-3.pdf

ALSO STATE YOUR SECTION in the E-MAIL, [there are 3 sections]

section-1 TA: Mehmet Karahan,

section-2 TA: Mehmet Karahan,

section-3 TA: Artun Sel.

PLEASE READ "Important Rules" section at the end of this document before submitting your document.

THE DEADLINE: Friday, October 28, 2022, 20:00.

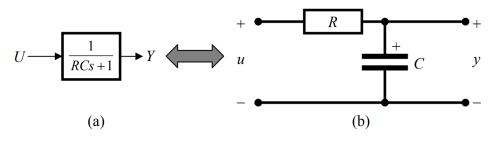
WARNING: Any work submitted at any time within the first 24 hours following the published submission deadline will receive a penalty of 10% of the maximum amount of marks available. Any work submitted at any time between 24 hours and up to 48 hours late will receive a deduction of 20% of the marks available

Contents

Task-1	2
Task-2	2
Task-3	
Task-4	3
Task-5	
Task-6	1
Important rules	5

Task-1

Find the transfer function of the system given below.



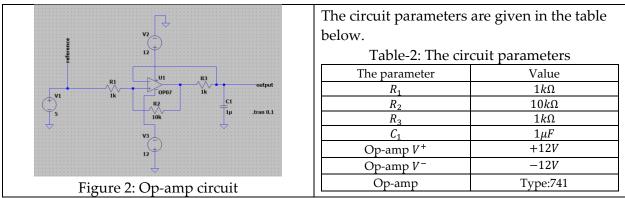

Figure 1: RC Circuit, a simple dynamical system (1st order)

Table 1: The Circuit Parameters

Parameter	Value	
R	$1k\Omega$	
С	$1\mu F$	

Task-2

Set up the circuit whose diagram and the parameter values are given below.

Apply $V_{ref} = 5 V$. Then measure "reference-voltage-signal", "output-voltage-signal" and "input-voltage-signal". [the input-voltage-signal is the output of op-amp]

Task-3 Using the circuit that is stated in Figure-2, Apply

 $V_{ref} = 5sgn(\sin(2\pi[10]t)), \forall t \ge 0$

Then measure "reference-voltage-signal", "output-voltage-signal" and "input-voltage-signal". [the input-voltage-signal is the output of op-amp]

Task-4

Using the circuit that is stated in Figure-2, Apply

 $V_{ref} = 5\sin(2\pi[10]t)$, $\forall t \ge 0$

Then measure "reference-voltage-signal", "output-voltage-signal" and "input-voltage-signal". [the input-voltage-signal is the output of op-amp]

Task-5

Using the circuit that is stated in Figure-2, Apply

 $V_{ref} = 5\sin(2\pi[50]t)$, $\forall t \ge 0$

Then measure "reference-voltage-signal", "output-voltage-signal" and "input-voltage-signal". [the input-voltage-signal is the output of op-amp]

Task-6	
Simulate the given closed-loop feedback control-system whose block diagram is given below.	in1
	Figure 3: Block diagram

The reference-signal sine wave is defined as,	The relay component is defined as,	
Sine Wave Output a sine wave: O(t) = Amp*Sin(Freq*t+Phase) + Blas Sine type determines the computational technique used. The parameters in the two types are related through: Samples per period = 2*pl / (Frequency * Sample time) Number of offset samples = Phase * Samples per period / (2*pl) Use the sample-based sine type if numerical problems due to running for large times (e.g. overflow in absolute time) occur. Parameters Sine type: Time based Time (t): Use is simulation time Amplitude: 10 Blas: o Frequency (rad/sec): 2*pir[0.1] Phase (rad): o Figure 4: sine properties	Relay Output the specified 'on' or 'off' value by comparing the input to the specified thresholds. The on/off state of the relay is not affected by input between the upper and lower limits. Main Signal Attributes Switch on point: :: 1 :: Output when on: :: -12 :: Output when off: :: +12 :: Input processing: Elements as channels (sample based) Figure 5: RELAY properties	

Simulation parameters are given in the Table-3.

Table 3: The simulation parameters

Simulation parameters	Value	
Simulation Duration	ion Duration 100 s	
Max-Step Size	1 <i>e</i> – 5	
	[Which means $10^{-5} s$ in MATLAB]	

Then plot the reference-signal and output-signal on top of each other. Additionally, plot the control-input-signal.

Important rules

The following is the list of the rules that must be followed. The failure of following the rules listed below will be resulted in point-deduction as stated in the table.

No.	Rule	Corresponding point-
		deduction for the
		failure of following
		the rule
01	The document must be mailed to TA of the section	5 pt.
02	The pdf file must be named as stated at the top of the document	5 pt.
03	The file must be in pdf format	5 pt.
04	Section-name must be stated in the mail that is to be sent to submit the	5 pt.
	lab-report or preliminary document	
05	The deadline must be met.	10 pt. for each day
		after the deadline
06	The file must be prepared in digital form.	5 pt.
	MSword or Latex must be used.	
07	All plots must be on a white background and the lines must be clearly	3 pt.
	visible. The names of the signals in the plot must be stated [either by	
	using legend or by using appropriate Figure Naming such as	
	"Figure 1: (red) input signal, (blue) output signal"]	
08	All figures must be numbered.	3 pt.
09	All tables must be numbered.	3 pt.
10	All equations must be numbered.	3 pt.
11	Reference must be added.	3 pt.
	Only books are allowed. Do not use internet sources.	
	Example references:	
	[1] "Modern Control Engineering 5th Ed", Ogata K., 2010, Prentice Hall	
	[2] "Linear Systems Theory 2 nd Ed", Hespanha J., 2018, Princeton Press	
12	Font style must be consistent. Times-New-Roman or Palatino-Linotype	3 pt.
	must be used.	
	Font size must be 11.	