LAB-1 Preliminary

Please follow the instructions in the document and mail your pdf-files to the TA of your section artunsel@gmail.com,

karahanmehmet13@gmail.com

Please name your pdf files as in the given example file:

Mehmet-Ali-Demir-111211102-lab-1-preliminary-G-3.pdf

Mehmet-Ali-Demir-111211102-lab-1-labreport-G-3.pdf

ALSO STATE YOUR SECTION in the E-MAIL, [there are 3 sections]

section-1 TA: Mehmet Karahan,

section-2 TA: Mehmet Karahan,

section-3 TA: Artun Sel.

PLEASE READ "Important Rules" section at the end of this document before submitting your document.

THE DEADLINE: Friday, October 21, 2022, 20:00.

WARNING: Any work submitted at any time within the first 24 hours following the published submission deadline will receive a penalty of 10% of the maximum amount of marks available. Any work submitted at any time between 24 hours and up to 48 hours late will receive a deduction of 20% of the marks available.

Contents

Simulation-1	2
Simulation-2	
Simulation-3	
Simulation-4	
Simulation-5	4
Simulation-6	5
Simulation-7	5
Simulation-8	6
Simulation-9	6
Simulation-10	7

Important Rules......8

Simulation-1

In this study, the circuit given below is to be simulated. There are 3 resistors, 1 capacitor, 1 opamp and 1 voltage source.

Then, the "reference voltage" and "output voltage" signals are to be measured.

[You can use any circuit-simulation-program that you want]

Here, <u>as an example</u> "LT-spice" has been used and reference voltage and output voltage have been measured.

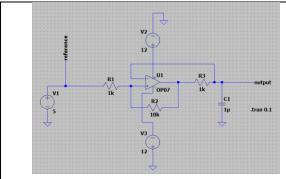


Figure 1: op-amp Circuit

The circuit parameters are given in the table below.

Table-1: The circuit parameters

The parameter	Value	
R_1	$1k\Omega$	
R_2	$10k\Omega$	
R_3	$1k\Omega$	
C_1	$1\mu F$	
Op-amp V ⁺	+12V	
Op-amp V⁻	-12V	
Op-amp	Type:741	

Use the circuit parameters as given in Table-1. The other parameters for this simulation are given in the table-2 below.

Table 2: Circuit Simulation Parameters

The parameter	Value	
V reference	+5 <i>V</i>	
simulation duration	100ms	

Then measure, "reference voltage" and "output voltage".

[The plot must be clearly visible, THE BACKGROUND OF THE PLOT MUST BE WHITE!!!]

The simulation output must be the plot given below.

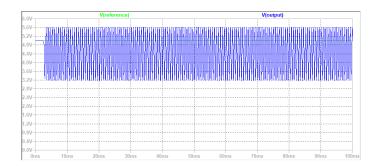


Figure 2: Spice Simulation Output

As an example, the same circuit has been simulated by using matlab-simulink-simscape-electronics.

AGAIN: [You can use any circuit-simulation-program that you are familiar with!]

Simulation-2

Use the circuit parameters as given in Table-1. The other parameters for this simulation are given in the table below.

Table 3: Circuit Simulation Parameters

The parameter	Value
V reference	square wave signal {0V,5V},10Hz
simulation duration	1 <i>s</i>

Then measure, "reference voltage" and "output voltage".

[The plot must be clearly visible, THE BACKGROUND OF THE PLOT MUST BE WHITE!!!]

Simulation-3

Use the circuit parameters as given in Table-1. The other parameters for this simulation are given in the table below.

Table 4: Circuit Simulation Parameters

The parameter	Value	
V reference	sine wave signal	
	$\{peak - to - peak \ voltage: 5V\}, 10Hz$	
simulation duration	1 <i>s</i>	

Then measure, "reference voltage" and "output voltage".

[The plot must be clearly visible, THE BACKGROUND OF THE PLOT MUST BE WHITE!!!]

Simulation-4

Use the circuit parameters as given in Table-1. The other parameters for this simulation are given in the table below.

Table 5: Circuit Simulation Parameters

The parameter	Value	
V reference	sine wave signal	
$\{peak - to - peak \ voltage: 5V\}, 20D$		
simulation duration	1 <i>s</i>	

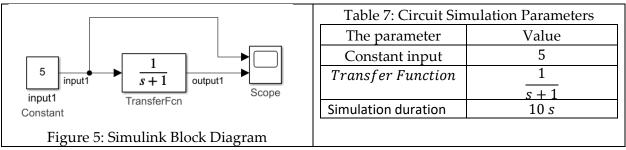
Then measure, "reference voltage" and "output voltage".

[The plot must be clearly visible, THE BACKGROUND OF THE PLOT MUST BE WHITE!!!]

Simulation-5

Use the circuit parameters as given in Table-1. The other parameters for this simulation are given in the table below.

Table 6: Circuit Simulation Parameters


The parameter	Value	
V reference	sine wave signal	
	{peak − to − peak voltage: 5V}, 100Hz	
simulation duration	1 <i>s</i>	

Then measure, "reference voltage" and "output voltage".

[The plot must be clearly visible, THE BACKGROUND OF THE PLOT MUST BE WHITE!!!]

Simulation-6

Using MATLAB-Simulink, simulate the given system below.

Then measure, "input1 signal" and "output1-signal".

[The plot must be clearly visible, THE BACKGROUND OF THE PLOT MUST BE WHITE!!!]

The simulation output must be the plot given below.

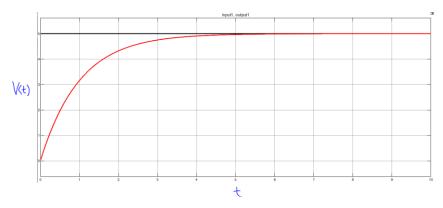
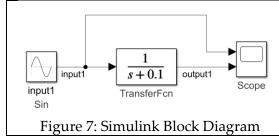
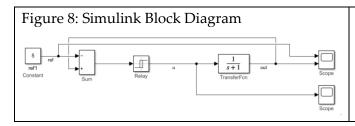



Figure 6: Simulink simulation output

Simulation-7

Using MATLAB-Simulink, simulate the given system below.

Table 8: Circuit Simulation Parameters		
The parameter	Value	
Input sine-wave	Amplitude: 1	
•	Freq: 0.1Hz	
Transfer Function	1	
	$\overline{s+0.1}$	
Simulation duration	100 s	


Then measure, "input1 signal" and "output1-signal".

[The plot must be clearly visible, THE BACKGROUND OF THE PLOT MUST BE WHITE!!!]

WHITE!!!]

Simulation-8

Using MATLAB-Simulink, simulate the given system below.

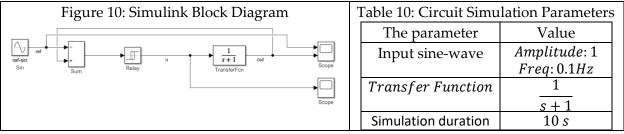
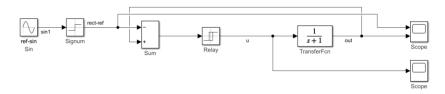

Table 9: Circuit Simulation Parameters		
The parameter Value		
Constant input	5	
Transfer Function 1		
	$\overline{s+1}$	
Simulation duration	10 s	

Figure 9: RELAY block parameters		
Block Parameters: Relay1		
Relay		
Output the specified 'on' or 'off' value by comparing the input to the specified thresholds. The on/off state of the relay is not affected by input between the upper and lower limits.		
Main Signal Attributes		
Switch on point:		
1		
Switch off point:		
-1		
Output when on:		
-12		
Output when off:		
+12		
Input processing: Elements as channels (sample based) ▼		
☑ Enable zero-crossing detection		

Then measure, "ref-signal" and "out-signal" and plot them in the same plot.
Then measure, "u-signal" and plot it.
[The plot must be clearly visible, THE BACKGROUND OF THE PLOT MUST BE

Simulation-9

Using MATLAB-Simulink, simulate the given system below.


Then measure, "ref-signal" and "out-signal" and plot them in the same plot.

Then measure, "u-signal" and plot it.

[The plot must be clearly visible, THE BACKGROUND OF THE PLOT MUST BE WHITE!!!]

Simulation-10

Using MATLAB-Simulink, simulate the given system below.

The parameter	Value
Reference signal	$sgn(\sin(2\pi(0.1)t))$
[rect-ref]	
Transfer Function	1
	$\overline{s+1}$
Simulation duration	10 s

[The RELAY block parameters are given in Figure 10.]

Then measure, "rect-ref-signal" and "out-signal" and plot them in the same plot.

Then measure, "u-signal" and plot it.

[The plot must be clearly visible, THE BACKGROUND OF THE PLOT MUST BE WHITE!!!]

Important Rules

The following is the list of the rules that must be followed. The failure of following the rules listed below will be resulted in point-deduction as stated in the table.

No.	Rule	Corresponding point-
		deduction for the
		failure of following
		the rule
01	The document must be mailed to TA of the section	5 pt.
02	The pdf file must be named as stated at the top of the document	5 pt.
03	The file must be in pdf format	5 pt.
04	Section-name must be stated in the mail that is to be sent to submit the	5 pt.
	lab-report or preliminary document	
05	The deadline must be met.	10 pt. for each day
		after the deadline
06	The file must be prepared in digital form.	5 pt.
	MSword or Latex must be used.	
07	All plots must be on a white background and the lines must be clearly	3 pt.
	visible. The names of the signals in the plot must be stated [either by	
	using legend or by using appropriate Figure Naming such as	
	"Figure 1: (red) input signal, (blue) output signal"]	
08	All figures must be numbered.	3 pt.
09	All tables must be numbered.	3 pt.
10	All equations must be numbered.	3 pt.
11	Reference must be added.	3 pt.
	Only books are allowed. Do not use internet sources.	
	Example references:	
	[1] "Modern Control Engineering 5th Ed", Ogata K., 2010, Prentice Hall	
	[2] "Linear Systems Theory 2nd Ed", Hespanha J., 2018, Princeton Press	
12	Font style must be consistent. Times-New-Roman or Palatino-Linotype	3 pt.
	must be used.	
	Font size must be 11.	