LAB-2 Preliminary

Please follow the instructions in the document and mail your pdf-files to the TA of your section artunsel@gmail.com,

karahanmehmet13@gmail.com

Please name your pdf files as in the given example file:

Mehmet-Ali-Demir-111211102-lab-1-preliminary-G-3.pdf

Mehmet-Ali-Demir-111211102-lab-1-labreport-G-3.pdf

ALSO STATE YOUR SECTION in the E-MAIL, [there are 3 sections]

section-1 TA: Mehmet Karahan,

section-2 TA: Mehmet Karahan,

section-3 TA: Artun Sel.

PLEASE READ "Important Rules" section at the end of this document before submitting your document.

THE DEADLINE: Friday, October 28, 2022, 20:00.

WARNING: Any work submitted at any time within the first 24 hours following the published submission deadline will receive a penalty of 10% of the maximum amount of marks available. Any work submitted at any time between 24 hours and up to 48 hours late will receive a deduction of 20% of the marks available.

Contents

TASK 1	2
TASK 2	
TASK 3	4
TASK 4	5
TASK 5	6
Important Rules	8

Find the transfer function of the plant whose dynamics are given by

Example for Task 1:

Find the transfer function of the system, whose dynamics are given by,

$$\ddot{x}(t) + 5\ddot{x}(t) - 7\dot{x}(t) + 3x(t) = u(t)$$
,
$$\ddot{x}(0) = 0$$

$$\dot{x}(0) = 0$$

$$\ddot{x}(0) = 0$$

$$\ddot{x}(0) = 0$$

$$\ddot{x}(0) = 0$$

Solution:

$$\ddot{x}(t) + 5\ddot{x}(t) - 7\dot{x}(t) + 3x(t) = u(t)$$

By taking the Laplace transform of this Differential Equation, we get

$$\mathcal{L}\{\ddot{x}(t)\} = s^{3}X(s)$$

$$\mathcal{L}\{5\ddot{x}(t)\} = 5s^{2}X(s)$$

$$\mathcal{L}\{-7\dot{x}(t)\} = -7sX(s)$$

$$\mathcal{L}\{3x(t)\} = 3X(s)$$

$$\mathcal{L}\{u(t)\} = U(s)$$

$$\mathcal{L}\{\ddot{x}(t) + 5\ddot{x}(t) - 7\dot{x}(t) + 3x(t)\} = \mathcal{L}\{u(t)\}$$

$$\mathcal{L}\{\ddot{x}(t)\} + \mathcal{L}\{5\ddot{x}(t)\} + \mathcal{L}\{-7\dot{x}(t)\} + \mathcal{L}\{3x(t)\} = \mathcal{L}\{u(t)\}$$

$$s^{3}X(s) + 5s^{2}X(s) + -7sX(s) + 3X(s) = U(s)$$

$$X(s)[s^{3} + 5s^{2} - 7s + 3] = U(s)$$

And finally, the transfer function is determined as

$$\frac{X(s)}{U(s)} = \frac{1}{[s^3 + 5s^2 - 7s + 3]}.$$

Find the poles and zeros of the transfer function of the plant in TASK-1.

Example-1 for Task 2: There are 5 transfer functions, and their corresponding poles are given below.

Transfer Functions	Denominator of the	Characteristic Equation of	Poles of the
	Transfer Function	the system	system
$T_1(s) = \frac{1}{s+1}$	s + 1	s + 1 = 0	{-1}
$T_2(s) = \frac{s+2}{s^2 + 3s + 2}$	$s^2 + 3s + 2$	$s^{2} + 3s + 2 = 0$ $(s+1)(s+2) = 0$	{-1,-2}
$T_3(s) = \frac{1}{(s+1)^2}$	$(s+1)^2$	$(s+1)^2 = 0$	{-1,-1}
$T_4(s) = \frac{1}{(s+1)(s+2)(s+3)}$	(s+1)(s+2)(s+3)	(s+1)(s+2)(s+3) = 0	{-1, -2, -3}
$T_5(s) = \frac{1}{(s-1)(s+2)}$	(s-1)(s+2)	(s-1)(s+2) = 0	{1, -2}

Example-2 for Task 2: There are 5 transfer functions, and their corresponding zeros are given below.

Transfer Functions	Numerator of the	Zeros of the system
	Transfer Function	
$T(s) = \frac{1}{s}$	1	{}
$T_1(s) = \frac{1}{s+1}$		It is an empty set
r(s) = s+2	s + 2	{-2}
$T_2(s) = \frac{1}{s^2 + 3s + 2}$		
$T_3(s) = \frac{(s+2)^2}{(s+1)^3}$	$(s+2)^2$	$\{-2, -2\}$
$I_3(s) = \frac{1}{(s+1)^3}$		
T (a) -	1	{}
$T_4(s) = \frac{1}{(s+1)(s+2)(s+3)}$		It is an empty set
(s+1)(s-2)	(s+1)(s-2)	{-1,2}
$T_5(s) = \frac{(s-1)(s-2)(s-3)}{(s-1)(s+2)(s+3)}$		

Use MATLAB's "impulse" command to obtain the impulse-response of the system given in TASK-1. Plot the impulse response.

Example for Task 3: There are 3 systems and their corresponding impulse-responses listed below.

Use MATLAB's "step" command to obtain the step-response of the system given in TASK-1. Plot the step response.

Example for Task 4: There are 3 systems and their corresponding step-responses listed below.

Find the closed-loop TF for a given block diagram. [Find the transfer function $\frac{X(s)}{R(s)}$]

In the block diagram, \boxed{k} represents a constant-gain.

Example for Task 5: There are 3 closed-loop systems and their corresponding closed-loop transfer functions listed below.

Example-1 for Task 5

Find the closed-loop transfer function for the given block diagram below.

[Find the transfer function $\frac{Y(s)}{R(s)}$]

Where the plant transfer function is given by $T_1(s) = \frac{1}{s+1}$

$$\frac{Y(s)}{R(s)} = \frac{kT_1(s)}{1 + kT_1(s)}$$

$$\frac{Y(s)}{R(s)} = \frac{k\frac{1}{s+1}}{1 + k\frac{1}{s+1}}$$

$$\frac{Y(s)}{R(s)} = \frac{k}{(s+1)+k}$$

And finally, the closed-loop transfer function is obtained as

$$\frac{Y(s)}{R(s)} = \frac{k}{s + (k+1)}$$

Example-2 for Task 5

Find the closed-loop transfer function for the given block diagram below.

[Find the transfer function $\frac{Y(s)}{R(s)}$]

Where the plant transfer function is given by $T_2(s) = \frac{s+3}{s^2+3s+2}$

$$\frac{Y(s)}{R(s)} = \frac{kT_2(s)}{1 + kT_2(s)}$$

$$\frac{Y(s)}{R(s)} = \frac{k\frac{s+3}{s^2+3s+2}}{1 + k\frac{s+3}{s^2+3s+2}}$$

$$\frac{Y(s)}{R(s)} = \frac{k(s+3)}{(s^2+3s+2) + k(s+3)}$$

And finally, the closed-loop transfer function is obtained as

$$\frac{Y(s)}{R(s)} = \frac{ks + 3k}{s^2 + (3+k)s + (2+3k)}$$

Example-3 for Task 5

Find the closed-loop transfer function for the given block diagram below.

[Find the transfer function $\frac{Y(s)}{R(s)}$]

Where the plant transfer function is given by $T_3(s) = \frac{(s+2)^2}{(s+1)^3}$

$$\frac{Y(s)}{R(s)} = \frac{k(s+2)^2}{(s+1)^3 + k(s+2)^2} \to \frac{k(s^2 + 4s + 4)}{[s^3 + 3s^2 + 3s + 1] + k(s^2 + 4s + 4)}$$

And finally, the closed-loop transfer function is obtained as

$$\frac{Y(s)}{R(s)} = \frac{[k]s^2 + [4k]s + [4k]}{[1]s^3 + [3+k]s^2 + [3+4k]s + [1+4k]}.$$

Important Rules

The following is the list of the rules that must be followed. The failure of following the rules listed below will be resulted in point-deduction as stated in the table.

No.	Rule	Corresponding point-
		deduction for the failure of
		following the rule
01	The document must be mailed to the TA of the section	5 pt.
02	The pdf file must be named as stated at the top of the document	5 pt.
03	The file must be in pdf format	5 pt.
04	Section-name must be stated in the mail that is to be sent to submit the lab-report or preliminary document	5 pt.
05	The deadline must be met.	10 pt. for each day after the
		deadline
06	The file must be prepared in digital form.	5 pt.
	MSword or Latex must be used.	
07	All plots must be on a white background and the lines must be clearly visible. The names	3 pt.
	of the signals in the plot must be stated [either by using legend or by using appropriate	
	Figure Naming such as	
	"Figure 1: (red) input signal, (blue) output signal"]	
08	All figures must be numbered.	3 pt.
09	All tables must be numbered.	3 pt.
10	All equations must be numbered.	3 pt.
11	References must be added.	3 pt.
	Only books are allowed. Do not use internet sources.	
	Example references:	
	[1] "Modern Control Engineering 5th Ed", Ogata K., 2010, Prentice Hall	
	[2] "Linear Systems Theory 2 nd Ed", Hespanha J., 2018, Princeton Press	
12	Font style must be consistent. Times-New-Roman or Palatino-Linotype must be used.	3 pt.
	Font size must be 11.	
13	Interpret the findings in each task accordingly.	5 pt.