LAB-3 Preliminary

Please follow the instructions in the document and mail your pdf-files to the TA of your section artunsel@gmail.com,

karahanmehmet13@gmail.com

Please name your pdf files as in the given example file:

Mehmet-Ali-Demir-111211102-lab-1-preliminary-G-3.pdf

Mehmet-Ali-Demir-111211102-lab-1-labreport-G-3.pdf

ALSO STATE YOUR SECTION in the E-MAIL, [there are 3 sections]

section-1 TA: Mehmet Karahan,

section-2 TA: Mehmet Karahan,

section-3 TA: Artun Sel.

PLEASE READ "Important Rules" section at the end of this document before submitting your document.

THE DEADLINE: Friday, November 4, 2022, 20:00.

WARNING: Any work submitted at any time within the first 24 hours following the published submission deadline will receive a penalty of 10% of the maximum amount of marks available. Any work submitted at any time between 24 hours and up to 48 hours late will receive a deduction of 20% of the marks available.

Contents

Problem-1	3
Part-1	3
Part-2	4
Part-3	4
Part-4	5
Part-5	6
Problem-2	7
Part-1	7
Part-2	7
Part-3	7
Part-4	7
Part-5	7
Important Rules	8

Problem-1

[This problem is given as an example. Analyze this problem then try to solve Problem-2.]

For a given control system whose block diagram is given as

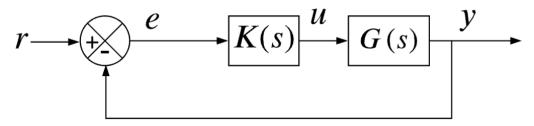


Figure 1: Block Diagram

Table 1: The block terms

plant	Controller	Open-loop	Closed-loop	Reference-to-Error
		TF	TF	TF
$G = \frac{1}{}$	$K = k_1 + k_2 \frac{1}{k_1 + k_2}$	L = GK	$T_{vr} = \frac{L}{1 - L}$	$T_{av} = \frac{1}{}$
s+1	$\frac{1}{S}$		1+L	$\frac{1 er}{1 + L}$

Part-1

Find the \overline{L} (open-loop transfer function) expression dependent on k1 and k2.

[you can use matlab-symbolic-toolbox to obtain the expression]

Matlab code	Matlab output
syms s k1 k2	open_loop_tf =
G_s=1/(s+1)	_
K_s=k1+k2/s;	$(k2 + k1*s)/(s^2 + s)$
open_loop_tf=K_s*G_s;	k2 + k1 s
<pre>open_loop_tf=simplifyFraction(open_loop_tf,'Expand',true) pretty(open_loop_tf)</pre>	
	2
	s + s

[Note: "simplify" is a matlab-command to simplify the symbolic expression]

[Note: "simplifyFraction" is a matlab-command to simplify the fractional symbolic expression]

[Note: "pretty" is a matlab-command to display the symbolic expression in a way that is easy to read]

Using this matlab script, it can be seen that

$$L = \frac{s[k_1] + [k_2]}{s^2[1] + s[1]}$$

Part-2

Find the T_{yr} (closed-loop transfer function) expression dependent on k1 and k2.

[you can use matlab-symbolic-toolbox to obtain the expression]

Matlab output	
T_yr =	
(k2 + k1*s)/(k2 + s + k1*s + s^2)	
k2 + k1 s	
2	
k2 + s + k1 s + s	

Using this matlab script it can be seen that

$$T_{yr} = \frac{s[k_1] + [k_2]}{s^2[1] + s[k_1 + 1] + [k_2]}$$

Part-3

Find the $\overline{T_{er}}$ (reference-to-error transfer function) expression dependent on k1 and k2. [you can use matlab-symbolic-toolbox to obtain the expression]

Matlab code	Matlab output
syms s k1 k2	T_er =
G_s=1/(s+1) % G_s=1/((s+1)*(s+2))	(s^2 + s)/(k2 + s + k1*s + s^2)
<pre>K_s=k1+k2/s; open_loop_tf=K_s*G_s; open_loop_tf=simplifyFraction(open_loop_tf,'Expand',true) % pretty(open_loop_tf) T_yr=open_loop_tf/(1+open_loop_tf); T_yr=simplifyFraction(T_yr,'Expand',true) T_er=1/(1+open_loop_tf); T_er=simplifyFraction(T_er,'Expand',true) pretty(T_er)</pre>	2 s + s2 k2 + s + k1 s + s

Using this matlab script it can be seen that

$$T_{er} = \frac{s^2[1] + s[1]}{s^2[1] + s[k_1 + 1] + [k_2]}$$

Part-4

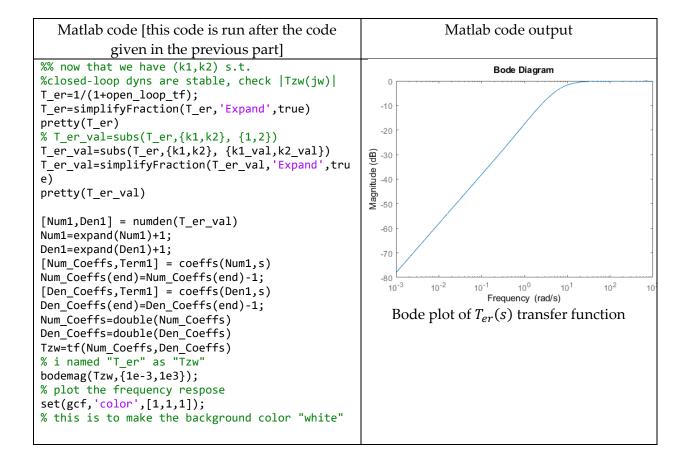
Find a k1 and k2 such that $|T_{vr}|$ is stable.

[you can generate random k1 and k2 values and then check the stability of the T_{vr}] system using "isstable" matlab command, or the roots of the characteristic Equation]

```
Matlab code
syms s k1 k2
G_s=1/(s+1)
K = k1+k2/s;
open_loop_tf=K_s*G_s;
open loop tf=simplifyFraction(open loop tf, 'Expand', true)
T yr=open loop tf/(1+open loop tf);
T_yr=simplifyFraction(T_yr, 'Expand', true)
T er=1/(1+open loop tf);
T_er=simplifyFraction(T_er, 'Expand', true)
[Num1,Den1] = numden(T yr) % "numden" fcn gets the numerator and denominator of a
%given rational-function
% [C,T] = coeffs(p,vars)
[Coeffs1,Term1] = coeffs(Den1,s)
while(true)
   % stay in this loop till u find a (k1,k2) values s.t. closed-loop is stable
   % subs 1 for k1, subs 2 for k2
   % Coeffs1_val=subs(Coeffs1, {k1,k2}, {1,2})
   Coeffs1 val=subs(Coeffs1, {k1, k2}, {k1 val, k2 val})
   % subs k1_val for k1, subs k2_val for k2
   Coeffs1 val=double(Coeffs1 val)
   % "Coeffs1_val" is "sym" type, to make it "double" use double() fcn
   roots 1=roots(Coeffs1 val)
   % compute the roots of the "Characteristic equation",
   % use the coefficients of the "characteristic polynomial"
   if all(real(roots 1)<0)</pre>
       disp('stable closed-loop dynamics');
       k1 val
       k2_val
       break;
   else
       disp('unstable closed-loop dynamics');
   end
end
```

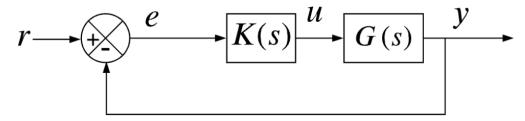
Matlab code output

8


k1 val = k2 val = 7

Note: in this given matlab script the matlab-commands you may not be familiar with are listed as

- 1) simplifyFraction
- 2) numden
- 3) coeffs
- 4) randi
- 5) subs
- 6) double
- 7) roots
- 8) all
- 9) real


Part-5

For the k1 and k2 values that you determined in the previous part, plot the frequency response for $\overline{T_{er}}$. [you can use "bode" matlab command to obtain a frequency response]

Problem-2

For a given control system whose block diagram is given as

plant	Controller	Open-loop	Closed-loop	Reference-to-Error
		TF	TF	TF
$G = \frac{1}{(s+1)(s+2)}$	$K = k_1 + k_2 \frac{1}{s}$	L = GK	$T_{yr} = \frac{L}{1+L}$	$T_{er} = \frac{1}{1+L}$

Part-1

Find the \overline{L} (open-loop transfer function) expression dependent on k1 and k2. [you can use matlab-symbolic-toolbox to obtain the expression]

Part-2

Find the T_{yr} (closed-loop transfer function) expression dependent on k1 and k2. [you can use matlab-symbolic-toolbox to obtain the expression]

Part-3

Find the $\overline{T_{er}}$ (reference-to-error transfer function) expression dependent on k1 and k2. [you can use matlab-symbolic-toolbox to obtain the expression]

Part-4

Find a k1 and k2 such that T_{yr} is stable. [you can generate random k1 and k2 values and then check the stability of the T_{yr} system using "isstable" matlab command]

Part-5

For the k1 and k2 values that you determined in the previous part, plot the frequency response for $\overline{T_{er}}$. [you can use "bode" matlab command to obtain a frequency response]

Important Rules

The following is the list of the rules that must be followed. The failure of following the rules listed below will be resulted in point-deduction as stated in the table.

No.	Rule	Corresponding point-
		deduction for the failure of
		following the rule
01	The document must be mailed to the TA of the section	5 pt.
02	The pdf file must be named as stated at the top of the document	5 pt.
03	The file must be in pdf format	5 pt.
04	Section-name must be stated in the mail that is to be sent to submit the lab-report or preliminary document	5 pt.
05	The deadline must be met.	10 pt. for each day after the
		deadline
06	The file must be prepared in digital form.	5 pt.
	MSword or Latex must be used.	
07	All plots must be on a white background and the lines must be clearly visible. The names	3 pt.
	of the signals in the plot must be stated [either by using legend or by using appropriate	
	Figure Naming such as	
	"Figure 1: (red) input signal, (blue) output signal"]	
08	All figures must be numbered.	3 pt.
09	All tables must be numbered.	3 pt.
10	All equations must be numbered.	3 pt.
11	References must be added.	3 pt.
	Only books are allowed. Do not use internet sources.	
	Example references:	
	[1] "Modern Control Engineering 5th Ed", Ogata K., 2010, Prentice Hall	
	[2] "Linear Systems Theory 2nd Ed", Hespanha J., 2018, Princeton Press	
12	Font style must be consistent. Times-New-Roman or Palatino-Linotype must be used.	3 pt.
	Font size must be 11.	
13	Interpret the findings in each task accordingly.	5 pt.